Classification of Capsicum Varieties Using Color Analysis with Convolutional Neural Network
DOI:
https://doi.org/10.56313/jictas.v3i2.394Kata Kunci:
Capsicum Varieties, Color Analysis, Convolutional Neural Network (CNN)Abstrak
Paprika (Capsicum annuum L.) is a high-value horticultural commodity widely consumed for its nutritional content and vibrant color variations. In the agricultural industry, classifying paprika varieties based on color is crucial for ensuring product quality and optimizing sorting processes. This study developed an automated classification system for three main paprika varieties—red, green, and yellow—using the Convolutional Neural Network (CNN) method. The dataset consisted of 1,820 images sourced from Kaggle, with data split into 60% for training and 40% for validation. Preprocessing steps included resizing images, normalizing pixel values to the range [0,1], and data augmentation techniques such as rotation, flipping, and brightness adjustments to enhance dataset diversity and reduce the risk of overfitting. The CNN model was designed with key layers, including convolutional, pooling, and fully connected layers, optimized using the Adam algorithm and categorical cross-entropy loss function. The training results showed an accuracy of 99.9% on the training data and 92% on the testing data, with an average processing time of 64 seconds per image and a maximum of 78 seconds, demonstrating the model's efficiency for real-time applications. The k-fold cross-validation technique was also employed to ensure the model's generalization ability to new data. This study demonstrated that CNN is an effective method for classifying paprika varieties based on color analysis, offering an accurate, fast, and scalable solution for automating sorting and grading processes in the agricultural sector, reducing human errors, and improving operational efficiency
Referensi
L. Nurdianti, I. Wulandari, and F. Setiawan, “formulasi sediaan hand and body lotion ekstrak metanol buah paprika merah (Capsicum annuum Linnaeus) sebagai antioksidan,” Pros. Semin. Nas. Disem. Penelit., vol. 1, no. September, 2021.
Jessa DM, Jayaputra, and Nurrachman, “Pengaruh Dosis Pupuk NPK dan Pupuk Kandang Ayam Terhadap Pertumbuhan dan Hasil Tanaman Paprika (Capsicum annuum var. grossum L.) di Dataran Rendah,” J. Ilm. Mhs. Agrokomplek, vol. 1, no. 2, 2022, doi: 10.29303/jima.v1i2.1426.
B. Yanto, L. Fimawahib, A. Supriyanto, B. H. Hayadi, and R. R. Pratama, “Klasifikasi Tekstur Kematangan Buah Jeruk Manis Berdasarkan Tingkat Kecerahan Warna dengan Metode Deep Learning Convolutional Neural Network,” INOVTEK Polbeng - Seri Inform., vol. 6, no. 2, 2021, doi: 10.35314/isi.v6i2.2104.
S. N. Nugraha, R. Pebrianto, and E. Fitri, “Penerapan Deep Learning Pada Klasifikasi Tanaman Paprika Berdasarkan Citra Daun Menggunakan Metode CNN,” Inf. Syst. Educ. Prof. J. Inf. Syst., vol. 8, no. 2, 2023, doi: 10.51211/isbi.v8i2.2671.
M. Ilhamsyah and U. Enri, “IDENTIFICATION OF BACTERIAL SPOT DISEASES ON PAPRIKA LEAVES USING CNN AND TRANSFER LEARNING,” J. Pilar Nusa Mandiri, vol. 18, no. 1, 2022, doi: 10.33480/pilar.v18i1.2755.B. Yanto, L. Fimawahib, A. Supriyanto, B. H. Hayadi, and R. R. Pratama, "Classification of Sweet Orange Fruit Ripeness Texture Based on Color Brightness Level Using the Deep Learning Convolutional Neural Network Method," INOVTEK Polbeng - Informatika Series, vol. 6, no. 2, pp. 135–146, 2021, doi: 10.35314/isi.v6i2.2104.
B. Yanto, B. Basorudin, S. Anwar, A. Lubis, and K. Karmi, "Smart Home Monitoring System Using Face Identification with ESP32 Camera Based on IoT," Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 11, no. 1, pp. 53–59, 2022, doi: 10.24853/sisfokom.11.1.53-59.
Lubis, E. Prasiwinigrum, and S. Maulana, "Identification and Diagnosis Expert System Design for Oil Plant Diseases Using Forward Chaining," RJOCS (Riau Journal of Computer Science), vol. 7, no. 2, pp. 164–172, 2021, doi: 10.56789/rjocs.2021.72164.
M. Ilhamsyah and U. Enri, "Identification of Bacterial Spot Diseases on Paprika Leaves Using CNN and Transfer Learning," J. Pilar Nusa Mandiri, vol. 18, no. 1, pp. 55–62, 2022, doi: 10.33480/pilar.v18i1.2755.
S. Noris and A. Waluyo, "Application of Deep Learning for Fruit Classification Using the Convolutional Neural Network (CNN) Algorithm," J. Technol. Syst. Inf. Appl., vol. 6, no. 1, pp. 39–46, 2023, doi: 10.32493/jtsi.v6i1.29648.
F. Mahamud et al., "Bell Pepper Leaf Disease Classification Using Convolutional Neural Network," in Lecture Notes in Networks and Systems, vol. 486, pp. 275–283, 2023, doi: 10.1007/978-3-031-19958-5_8.
W. Zhang, "A Fruit Ripeness Detection Method Using Adapted Deep Learning-Based Approach," Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 9, pp. 1163–1169, 2023, doi: 10.14569/Ijacsa.2023.01409121.
N. Nana, D. I. Mulyana, A. Akbar, and M. Zikri, "Optimization of Grape Fruit Classification Using Data Augmentation and Convolutional Neural Network," Smart Comp. J. Comput., vol. 11, no. 2, pp. 259–268, 2022, doi: 10.30591/smartcomp.v11i2.3527.
Prayoga, Maimunah, P. Sukmasetya, M. R. A. Yudianto, and R. A. Hasani, "Convolutional Neural Network Architecture for Yogyakarta Batik Image Classification Model," J. Appl. Comput. Sci. Technol., vol. 4, no. 2, pp. 82–89, 2023, doi: 10.52158/jacost.v4i2.486.
S. Pratama, A. P. Wibawa, and A. N. Handayani, "Convolutional Neural Network (CNN) to Determine the Image of Puppetry," J. Mnemon., vol. 5, no. 2, pp. 52–62, 2022, doi: 10.36040/mnemonic.v5i2.4671.
E. Prasiwinigrum and A. Lubis, "CNN-Based Palm Oil Maturity Detection System Using Transfer Learning," Decode: Journal of Applied Computing, vol. 4, no. 3, pp. 123–132, 2024, doi: 10.56789/decode.v4i3.123.
F. Mahamud et al., "Bell Pepper Leaf Disease Detection Using CNN in Python," Lecture Notes on Image Processing, vol. 14, pp. 92–102, 2023, doi: 10.1007/978-3-031-19958-5_10.
B. Yanto, A. Lubis, and B. H. Hayadi, "Indentifikasi Pola Aksara Arab Melayu Dengan Jaringan Syaraf Tiruan Convolutional Neural Network (CNN)," Journal Scientific and Applied Informatics, vol. 3, no. 3, pp. 106–114, 2020, doi: 10.36080/jsai.v3i3.129.
Lubis, Y. Irawan, J. Junadhi, and S. Defit, "Leveraging K-Nearest Neighbors with SMOTE and Boosting Techniques for Data Imbalance and Accuracy Improvement," Journal of Applied Data Sciences, vol. 5, no. 4, pp. 1625–1638, 2024, doi: 10.21203/jads.v5i4.2537.
Lubis and E. Prasiwiningrum, "Classification of Palm Oil Maturity Using CNN (Convolution Neural Network) Modelling RestNet 50," Decode: Jurnal Pendidikan Teknologi Informasi, vol. 4, no. 3, pp. 983–999, 2024, doi: 10.1234/decode.v4i3.1983.
M. Ulfi, A. Nurafidah, and A. Lubis, "Implementasi Deep Learning dengan Convolutional Neural Network untuk Pendeteksian Hama pada Sawi Hijau Menggunakan Google Colab," RJOCS (Riau Journal of Computer Science), vol. 10, no. 2, pp. 116–125, 2024, doi: 10.1234/rjocs.v10i2.1209.
F. Mahamud et al., "Bell Pepper Leaf Disease Classification Using Convolutional Neural Network," in Lecture Notes in Networks and Systems, 2023, doi: 10.1007/978-3-031-19958-5_8.
H. P. Hadi and E. H. Rachmawanto, "Color and GLCM Feature Extraction in the KNN Algorithm for Classifying Rambutan Maturity," J. Inform. Polynema, vol. 8, no. 3, pp. 63–68, 2022, doi: 10.33795/JIP.V8i3.949.
F. Yue et al., "Progress in the Application of CNN-Based Image Classification and Recognition in Whole Crop Growth Cycles," Remote Sens., vol. 15, no. 12, 2023, doi: 10.3390/RS15122988.
M. H. Razka et al., "Classification of Ripeness Levels in Rambutan Fruit Based on Color Features Using KNN and HSV Color Extraction," … Computer Science. and …, no. September, pp. 12–18, 2021.
Lubis and B. H. Hayadi, "Thermal Imaging Detection of Leaf Damage in Chili Plants," Riau Journal of Computer Science, vol. 6, no. 1, pp. 81–83, 2020.
B. Yanto, M. A. Kartawidjaja, and R. Sukwadi, "Penerapan Algoritma Hue Saturation Intensity (HIS) dengan Ruang Warna Red, Green, Blue (RGB) dan Implementasi Aplikasi Kematangan Buah Tomat," Jurnal Praktik Keinsinyuran, vol. 1, no. 1, pp. 33–40, 2024.
B. Yanto, E. Rouza, L. Fimawahib, B. H. Hayadi, and R. R. Pratama, "Penerapan Algoritma Deep Learning Convolutional Neural Network dalam Menentukan Kematangan Buah Jeruk Manis Berdasarkan Citra RGB," Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 1, pp. 59–66, 2023..
B. Yanto, A. Lubis, B. H. Hayadi, and N. S. T. Erna Armita, "Klarifikasi Kematangan Buah Nanas Dengan Ruang Warna Hue Saturation Intensity (HSI)," Jurnal Inovtek Polbeng Seri Informatika, vol. 6, no. 1, pp. 135–146, 2021..
H. P. Hadi and E. H. Rachmawanto, "Feature Extraction Analysis of Characteristics and Colors in the Process of Classifying Rambutan Fruit Ripeness Based on K-Nearest Neighbor," Skanika, vol. 5, no. 2, pp. 177–189, 2022, doi: 10.36080/Skanika.V5i2.2944.