A Systematic Review of Convolutional Neural Networks in Automated Skin Cancer Diagnosis Using Dermatoscopic Images

Authors

  • Ahmad muhajirin Universitas Pasir Pengaraian, Riau, Indonesia
  • Achmad Alwi Hasibuan Universitas Pasir Pengaraian, Indonesia, Riau
  • Aldi Antoni Universitas Pasir Pengaraian, Indonesia, Riau
  • Ali Amran NST Universitas Pasir Pengaraian, Indonesia, Riau
  • Ns. Romy Wahyuny Universitas Pasir Pengaraian, Indonesia, Riau

DOI:

https://doi.org/10.56313/jictas.v3i2.390

Keywords:

Automated diagnosis, Convolutional Neural Networks, Deep learning, Skin cancer, Dermatoscopic images

Abstract

Skin cancer is one of the most prevalent types of cancer worldwide, requiring early detection for effective treatment and improved patient outcomes. Traditional diagnostic methods, such as biopsies, are time-consuming, costly, and uncomfortable for patients. In response to these challenges, this study systematically reviews the application of Convolutional Neural Networks (CNNs) in automated skin cancer diagnosis using dermatoscopic images. CNNs have demonstrated remarkable performance in image processing tasks due to their ability to extract complex features and ensure high classification accuracy. This review analyzes various CNN architectures, such as GoogLeNet, ResNet, and YOLOv8, in terms of their effectiveness in distinguishing between benign and malignant skin lesions. Results from existing literature indicate that CNN-based systems achieve an accuracy of up to 97.73%, making them a promising solution for automated diagnostic tools. The findings emphasize the importance of data augmentation, parameter optimization, and diverse datasets to improve model generalizability. This study concludes that integrating CNN-based diagnostic systems with clinical workflows has significant potential to enhance early detection, optimize medical resources, and raise public awareness of skin cancer prevention

References

B. Yanto, L. Fimawahib, A. Supriyanto, B. H. Hayadi, and R. R. Pratama, "Klasifikasi Tekstur Kematangan Buah Jeruk Manis Berdasarkan Tingkat Kecerahan Warna dengan Metode Deep Learning Convolutional Neural Network," Jurnal Inovtek Polbeng Seri Informatika, vol. 6, no. 2, pp. 259–268, 2021. [Online]. Available: https://jurnal.polbeng.ac.id/index.php/informatika/article/view/1351.

B. Yanto, A. Lubis, B. H. Hayadi, and N. S. T. Erna Armita, "Klarifikasi Kematangan Buah Nanas Dengan Ruang Warna Hue Saturation Intensity (HSI)," Jurnal Inovtek Polbeng Seri Informatika, vol. 6, no. 1, pp. 135–146, 2021. [Online]. Available: https://jurnal.polbeng.ac.id/index.php/informatika/article/view/1351.

A. Lubis, I. Iskandar, and M. M. L. W. Panjaitan, "Implementation of KNN Methods and GLCM Extraction for Classification of Road Damage Level," IAIC Transactions on Sustainable Digital Innovation (ITSDI), vol. 4, no. 1, pp. 1–7, 2022. DOI: 10.34306/itsdi.v4i1.552.

A. Lubis and E. Prasiwiningrum, "Implementation of PageRank Algorithm for Visualization and Weighting of Keyword Networks in Scientific Papers," Journal of Applied Data Sciences, vol. 4, no. 4, pp. 382–391, 2023. DOI: 10.47738/jads.v4i4.203.

F. P. Loss et al., "Skin Cancer Diagnosis Using NIR Spectroscopy Data of Skin Lesions In Vivo Using Machine Learning Algorithms," arXiv preprint arXiv:2401.01200, 2024. [Online]. Available: https://arxiv.org/abs/2401.01200.

N. Kanwal et al., "Detection and Localization of Melanoma Skin Cancer in Histopathological Whole Slide Images," arXiv preprint arXiv:2302.03014, 2023. [Online]. Available: https://arxiv.org/abs/2302.03014.

J. G. M. Esgario and R. A. Krohling, "Beyond Visual Image: Automated Diagnosis of Pigmented Skin Lesions Combining Clinical Image Features with Patient Data," arXiv preprint arXiv:2201.10650, 2022. [Online]. Available: https://arxiv.org/abs/2201.10650.

S. S. Chaturvedi, K. Gupta, and P. S. Prasad, "Skin Lesion Analyser: An Efficient Seven-Way Multi-Class Skin Cancer Classification Using MobileNet," arXiv preprint arXiv:1907.03220, 2019. [Online]. Available: https://arxiv.org/abs/1907.03220.

R. Giusto and J. R. Martinez, "Cybersecurity Data Analytics: Trends and Perspectives," IEEE Security & Privacy, vol. 18, no. 3, pp. 45–52, 2020. DOI: 10.1109/MSEC.2020.2975070.

Z. Tariq, "Comparative Analysis of Visualization Tools for Big Data," IEEE Transactions on Big Data, vol. 7, no. 1, pp. 45–53, 2021. DOI: 10.1109/TBDATA.2021.3056403.

A. Chatterjee et al., "Real-Time Big Data Analytics for Cybersecurity Monitoring," Future Generation Computer Systems, vol. 79, pp. 30–45, 2018. DOI: 10.1016/j.future.2017.02.002.

S. Kumar and V. Sehgal, "Big Data Analytics for Cybersecurity," IEEE Access, vol. 7, pp. 143,299–143,307, 2019. DOI: 10.1109/ACCESS.2019.2944444.

A. Pakpahan, J. R. Sagala, R. Yesputra, A. Lubis, H. Saputra, and H. T. Sihotang, "Implementation of Certainty Factor Method for Diagnoses of Photocopy Machine Damage," Journal of Physics: Conference Series, vol. 1255, no. 1, p. 012059, 2019. DOI: 10.1088/1742-6596/1255/1/012059.

B. H. Hayadi, K. Rukun, R. E. Wulansari, T. Herawan, and D. Dahliusmanto, "Expert System of Quail Disease Diagnosis Using Forward Chaining Method," Indonesian Journal of Electrical Engineering and Computer Science, vol. 5, no. 1, pp. 207–214, 2017. DOI: 10.11591/ijeecs.v5.i1.pp207-214.

B. H. Hayadi, R. D. P. Permatasari, and K. Rukun, "Development of Digital Information Management Learning Media Based on Adobe Flash in Grade X of Digital Simulation Subject," Journal of Physics: Conference Series, vol. 1363, no. 1, p. 012066, 2019. DOI: 10.1088/1742-6596/1363/1/012066.

E. Bisong, Google BigQuery: Building Machine Learning and Deep Learning Models on Google Cloud Platform. New York: Springer, 2019. DOI: 10.1007/978-1-4842-4470-8_38.

H. Demirkan and D. Delen, "Leveraging Business Intelligence and Analytics for Enhancing Enterprise Performance," MIS Quarterly Executive, vol. 12, no. 4, pp. 19–29, 2013.

R. Sahtyawan, "Penerapan Zero Entry Hacking di dalam Security Misconfiguration pada VAPT," Journal of Information System Management (JOISM), vol. 1, no. 1, pp. 18–25, 2019. DOI: 10.24076/joism.2019v1i1.18.

Y. Talaoui, M. Kohtamäki, and R. Rajala, "Seeking 'strategy' in business intelligence literature: Theorizing BI as part of strategy research," Technology Innovation Management Review, vol. 10, no. 9, pp. 20–32, 2020. DOI: 10.22215/TIMREVIEW/1387.

Published

2024-12-31

How to Cite

muhajirin, A., Achmad Alwi Hasibuan, Aldi Antoni, Ali Amran NST, & Ns. Romy Wahyuny. (2024). A Systematic Review of Convolutional Neural Networks in Automated Skin Cancer Diagnosis Using Dermatoscopic Images. Journal of ICT Applications System, 3(2), 33-46. https://doi.org/10.56313/jictas.v3i2.390