Systematic Literature Review: Advancements in Skin Cancer Diagnosis Using Convolutional Neural Networks and Dermatoscopic Imaging
DOI:
https://doi.org/10.56313/jictas.v3i2.390Kata Kunci:
Skin Cancer, Convolutional Neural Network (CNN), Automated Diagnostic System, Dermatoscopic Images, Machine LearningAbstrak
This study conducts a systematic literature review (SLR) to analyze the application of CNN in automated diagnostic systems for skin cancer using dermatoscopic images. The review examines methods, architectures, and datasets used in recent studies, focusing on their accuracy, efficiency, and limitations. It highlights the adoption of models such as GoogLeNet, ResNet-50, and YOLOv8, which have achieved accuracy levels exceeding 90%, demonstrating the capability of CNNs in distinguishing between benign and malignant lesions. The findings reveal that while CNNs offer high precision and recall, challenges remain in terms of overfitting, dataset diversity, and computational cost. This study underscores the need for larger and more balanced datasets, advanced augmentation techniques, and optimized architectures to enhance model generalizability. The research aims to contribute to the development of robust, efficient, and accessible AI-based diagnostic tools for early skin cancer detection, improving clinical decision-making and patient care.
Referensi
B. Yanto, L. Fimawahib, A. Supriyanto, B. H. Hayadi, and R. R. Pratama, "Klasifikasi Tekstur Kematangan Buah Jeruk Manis Berdasarkan Tingkat Kecerahan Warna dengan Metode Deep Learning Convolutional Neural Network," Jurnal Inovtek Polbeng Seri Informatika, vol. 6, no. 2, pp. 259–268, 2021. [Online]. Available: https://jurnal.polbeng.ac.id/index.php/informatika/article/view/1351.
B. Yanto, A. Lubis, B. H. Hayadi, and N. S. T. Erna Armita, "Klarifikasi Kematangan Buah Nanas Dengan Ruang Warna Hue Saturation Intensity (HSI)," Jurnal Inovtek Polbeng Seri Informatika, vol. 6, no. 1, pp. 135–146, 2021. [Online]. Available: https://jurnal.polbeng.ac.id/index.php/informatika/article/view/1351.
A. Lubis, I. Iskandar, and M. M. L. W. Panjaitan, "Implementation of KNN Methods and GLCM Extraction for Classification of Road Damage Level," IAIC Transactions on Sustainable Digital Innovation (ITSDI), vol. 4, no. 1, pp. 1–7, 2022. DOI: 10.34306/itsdi.v4i1.552.
A. Lubis and E. Prasiwiningrum, "Implementation of PageRank Algorithm for Visualization and Weighting of Keyword Networks in Scientific Papers," Journal of Applied Data Sciences, vol. 4, no. 4, pp. 382–391, 2023. DOI: 10.47738/jads.v4i4.203.
F. P. Loss et al., "Skin Cancer Diagnosis Using NIR Spectroscopy Data of Skin Lesions In Vivo Using Machine Learning Algorithms," arXiv preprint arXiv:2401.01200, 2024. [Online]. Available: https://arxiv.org/abs/2401.01200.
N. Kanwal et al., "Detection and Localization of Melanoma Skin Cancer in Histopathological Whole Slide Images," arXiv preprint arXiv:2302.03014, 2023. [Online]. Available: https://arxiv.org/abs/2302.03014.
J. G. M. Esgario and R. A. Krohling, "Beyond Visual Image: Automated Diagnosis of Pigmented Skin Lesions Combining Clinical Image Features with Patient Data," arXiv preprint arXiv:2201.10650, 2022. [Online]. Available: https://arxiv.org/abs/2201.10650.
S. S. Chaturvedi, K. Gupta, and P. S. Prasad, "Skin Lesion Analyser: An Efficient Seven-Way Multi-Class Skin Cancer Classification Using MobileNet," arXiv preprint arXiv:1907.03220, 2019. [Online]. Available: https://arxiv.org/abs/1907.03220.
R. Giusto and J. R. Martinez, "Cybersecurity Data Analytics: Trends and Perspectives," IEEE Security & Privacy, vol. 18, no. 3, pp. 45–52, 2020. DOI: 10.1109/MSEC.2020.2975070.
Z. Tariq, "Comparative Analysis of Visualization Tools for Big Data," IEEE Transactions on Big Data, vol. 7, no. 1, pp. 45–53, 2021. DOI: 10.1109/TBDATA.2021.3056403.
A. Chatterjee et al., "Real-Time Big Data Analytics for Cybersecurity Monitoring," Future Generation Computer Systems, vol. 79, pp. 30–45, 2018. DOI: 10.1016/j.future.2017.02.002.
S. Kumar and V. Sehgal, "Big Data Analytics for Cybersecurity," IEEE Access, vol. 7, pp. 143,299–143,307, 2019. DOI: 10.1109/ACCESS.2019.2944444.
A. Pakpahan, J. R. Sagala, R. Yesputra, A. Lubis, H. Saputra, and H. T. Sihotang, "Implementation of Certainty Factor Method for Diagnoses of Photocopy Machine Damage," Journal of Physics: Conference Series, vol. 1255, no. 1, p. 012059, 2019. DOI: 10.1088/1742-6596/1255/1/012059.
B. H. Hayadi, K. Rukun, R. E. Wulansari, T. Herawan, and D. Dahliusmanto, "Expert System of Quail Disease Diagnosis Using Forward Chaining Method," Indonesian Journal of Electrical Engineering and Computer Science, vol. 5, no. 1, pp. 207–214, 2017. DOI: 10.11591/ijeecs.v5.i1.pp207-214.
B. H. Hayadi, R. D. P. Permatasari, and K. Rukun, "Development of Digital Information Management Learning Media Based on Adobe Flash in Grade X of Digital Simulation Subject," Journal of Physics: Conference Series, vol. 1363, no. 1, p. 012066, 2019. DOI: 10.1088/1742-6596/1363/1/012066.
E. Bisong, Google BigQuery: Building Machine Learning and Deep Learning Models on Google Cloud Platform. New York: Springer, 2019. DOI: 10.1007/978-1-4842-4470-8_38.
H. Demirkan and D. Delen, "Leveraging Business Intelligence and Analytics for Enhancing Enterprise Performance," MIS Quarterly Executive, vol. 12, no. 4, pp. 19–29, 2013.
R. Sahtyawan, "Penerapan Zero Entry Hacking di dalam Security Misconfiguration pada VAPT," Journal of Information System Management (JOISM), vol. 1, no. 1, pp. 18–25, 2019. DOI: 10.24076/joism.2019v1i1.18.
Y. Talaoui, M. Kohtamäki, and R. Rajala, "Seeking 'strategy' in business intelligence literature: Theorizing BI as part of strategy research," Technology Innovation Management Review, vol. 10, no. 9, pp. 20–32, 2020. DOI: 10.22215/TIMREVIEW/1387.